

# Interactive I.T. Student Activity Sheets Leaving Certificate Strand 1



- Student Activities written to match the I.T. interactive modules on the Project Maths Leaving Certificate Student's CD Strand 1
- Interactive Activity Sheets included to enhance students' understanding of mathematical concepts
- Simple and clear guidelines are provided to facilitate learning
- Interesting questions are provided to lead students to explore, construct and consolidate their learning



#### **Preface**

The NCCA have pointed out particular key Skills in their Draft Syllabus. "While particular emphasis is placed in mathematics on the development and use of information processing, logical thinking and problem-solving skills, the new approach being adopted in the teaching and learning of mathematics will also give prominence to students being able to develop their skills in communicating and working with others. By adopting a variety of approaches and strategies for solving problems in mathematics, students will develop their self-confidence and personal effectiveness." To help our students to adapt to and take advantage of this new spirit of the syllabus, we have produced Interactive I.T. Student Activity Sheets which incorporate an innovative and diversified learning environment for mathematics.

As we all know, the advancement in technology has changed the way we can learn mathematics. Therefore we have developed a number of interactive modules on our student's CD to match this new development. With the help of these interactive modules, students can not only enhance their understanding in mathematics, but they can also enjoy learning it.

In order to help our students use the I.T. tools more effectively, *Interactive I.T. Student*Activity Sheets Leaving Certificate Strand 1 are produced in this booklet. A student activity sheet is designed for the majority of the interactive modules on the CD. All student activity sheets provide simple and clear guidelines including:

- Reference to the related topics in *Project Maths Student's CD Leaving Certificate* Strand 1 section
- **2.** Purpose of the I.T. tools
- **3.** Instructions for using the I.T. tools.

These Student Activity Sheets, which include many interesting questions, will lead students to explore, construct, and consolidate their knowledge of mathematics on their own with ease. We believe that with the help of these activities, students' knowledge and understanding of mathematics will grow



#### **Table of Contents**

| Corresponding Position on Student's CD                 | Name of Student Activity Sheet                                                                                                              | Page |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| Student Activity on adding a constant                  | Student Activity: To investigate the effect of adding a common constant to all data                                                         | 5    |
| Student Activity on multiplying by a constant          | Student Activity: To investigate the effect of multiplying all the data by a common constant                                                | 6    |
| Mean after adding a new data item                      | Student Activity: To investigate the effect on the mean of adding an extra data item to a data set when the value of this data item is zero | 7    |
| Student Activity Stem and Leaf                         | Stem and Leaf Quiz                                                                                                                          | 8    |
| Student Activity Histogram 2                           | Student Activity: To investigate the effect of changing one data item in a histogram                                                        | 9    |
| Student Activity Mean and SD                           | Mean and Standard Deviation Quiz                                                                                                            | 12   |
| Mean and SD Quiz                                       | Student Activity: To investigate the mean and standard deviation of a data set                                                              | 14   |
| Student Activity Correlation and line of Best Fit      | Student Activity: To investigate correlation and line of best fit                                                                           | 19   |
| Tasks Related to Correlation and<br>Line of Best Fit 2 | Tasks Related to Correlation and Line of Best Fit 2                                                                                         | 21   |
| Scatter Plot Quiz                                      | Scatter Plot Quiz                                                                                                                           | 25   |
| Word Quiz 1                                            | Statistical Words 1                                                                                                                         | 26   |
| Word Quiz 2                                            | Statistical Words 2                                                                                                                         | 27   |



#### Instructions for use

This booklet contains student activities to accompany the majority of the interactive files on the Leaving Certificate Strand 1 section of the student disk. The specific section of the course that the activity relates to is specified in the name of the activity. At the top of each student activity the students are told what interactive file on the student disk is to accompany the student activity.

#### **Technical Problems**

The student disk has a link situated on the left hand side of its front page called "Troubleshooting" this section gives instructions, if any of the following problems are encountered:

- Problems opening Office 2007 documents
- You do not have Java on your machine
- You do not have a PDF reader on your machine.



# **Student Activity**: To investigate the effect of adding a common constant to all data

Use in connection with the interactive file "Effect on Mean by adding a constant" on the Student's CD.

| 1. | Calculate the mean of the following data set 5, 4, 3, 2, 1 manually.                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Insert the data set 5, 4, 3, 2, 1 into the interactive file. Click the arrow No 2 to calculate the mean.                                                                     |
| 3. | Calculate the mean of the following data set 10, 9, 8, 7, 6 manually.                                                                                                        |
| 4. | Insert 5 as the common constant in the interactive file and click to calculate the new mean. Explain what this does to each data item and record the new mean.               |
| 5. | Repeat with different common constants. Do you notice any relationship between the mean before the common constant is added and the mean after the common constant is added? |
| 6. | What is the effect on the mean of a set of data items of adding a common constant to all items in the data set?                                                              |
| 7. | If the mean of a set of 100 data items is 55 and 10 is added to each data item, what will the new mean be?                                                                   |
| 8. | If 5 is added to each item in a data set and the mean is found to be 23, what would the mean of the original numbers have been?                                              |
|    | ·                                                                                                                                                                            |



# Student Activity: To investigate the effect of multiplying all the data by a common constant

Use in connection with the interactive file "Effect on the Mean by multiply data items by a constant" on the Student's CD.

| • | Insert 5 as the common constant and click to calculate the new mean. Explain what this does to each data item and record the new mean.                                                                                               |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Repeat with different common constants. Do you notice any relationship between the mean before the data items are all multiplied by the common constant and the mean after the data items are all multiplied by the common constant? |
| • | What is the effect on the mean of multiplying all the data items by a common constant?                                                                                                                                               |
| • | If the mean of a set of 10 data items is 34 and each data item is multiplied by 5, what will the new mean be?                                                                                                                        |
| • | If each item in a data set is multiplied by 10 and the mean is found to be 23, what would the mean of the original numbers have been?                                                                                                |



# Student Activity: To investigate the effect on the mean of adding an extra data item to a data set when the value of this data item is zero

Use in connection with the interactive file "Effect on the Mean by adding a new data item" on the Student's CD.

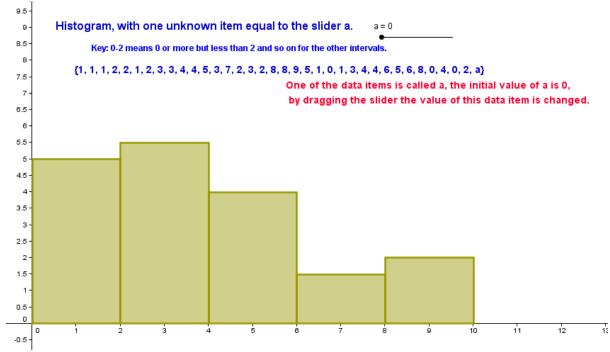
| 1. | Calculate the mean of the data set 8, 7, 6, 5, and 4 manually.                                                                                                                                           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                          |
| 2. | Insert the following data set 8, 7, 6, 5, 4 into the interactive file. Click to calculate the mean.                                                                                                      |
| 3. | What was the mean in the interactive file and did it agree with the answer you got in No 1? If not recheck your work in No 1.                                                                            |
| 4. | Calculate the mean of the data set 8, 7, 6, 5, 4 and 0 manually.                                                                                                                                         |
|    |                                                                                                                                                                                                          |
| 5. | Click arrows 3 and 4 in the interactive file to check your answer to No 4.                                                                                                                               |
| 6. | What was the difference in the data sets in No 1 and No 4 and are their means equal?                                                                                                                     |
|    |                                                                                                                                                                                                          |
| 7. | Click the button to reset the interactive file. Insert a data set of your own and after clicking the arrows 1-4 answer the question "Are the Mean and New Mean related?" Repeat this question once more. |
|    |                                                                                                                                                                                                          |
| 8. | If one adds a new data item that is equal zero to a data set, is the mean of the new data set always going to be bigger or smaller than the mean of the original data set? Explain why.                  |
|    |                                                                                                                                                                                                          |



## **Stem and Leaf Quiz**

1. 29 is the data item, is 2 or 9 the stem?

Use in connection with the interactive file" Stem and Leaf" on the Student's CD.


B. 9

| 2. | 45 is th<br>A.                              | e data item, is 5 the stem?<br>No B. Yes                                                                          |
|----|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 3. | When the A.                                 | he data item is a single digit like 6, is the stem 0?<br>Yes                                                      |
|    | B.                                          | No                                                                                                                |
| 4. | Can a s                                     | stem and leaf diagram deal with two data items being the same?<br>Yes                                             |
|    | B.                                          | No                                                                                                                |
| 5. | Are ste                                     | m and leaf diagrams confined to dealing with item items between 0 and 100?  Yes  B. No                            |
| 6. | Which s                                     | stem has more leaves? The least popular                                                                           |
|    | B.                                          | The most popular                                                                                                  |
| 7. | Do the A.                                   | stems for a set of marks have to stop at 9?<br>No                                                                 |
|    | B.                                          | Yes                                                                                                               |
| 8. |                                             | ts are allowed marks between 30 and 80 inclusive, what numbers would be in m if they went up in 10's? 3,4,5,6,7,8 |
|    | B.                                          | 3,4,5,6,7                                                                                                         |
| 9. | Do Ster<br>A.                               | m and Leaf diagrams have to be in colour?<br>Yes B. No                                                            |
| 10 | . What is 20: 7 8 30: 5 5 40: 1 3 50: 60: 3 |                                                                                                                   |
|    | A.                                          | 37 B. 35                                                                                                          |
|    |                                             |                                                                                                                   |



# <u>Student Activity</u>: To investigate the effect of changing one data item in a histogram

Use in connection with the Interactive file "Histogram 2" on the Student's CD.



1. How many class intervals are in the histogram in the interactive file?

2. Using the given key, what values can be placed in the class interval 4-6?

3. What property of each rectangle represents frequency?

\_\_\_\_\_\_

4. Using the interactive file as it was when first opened and given that there are 10 items in the class interval 0-2, complete the table?

| Class Interval | Frequency | Reason |
|----------------|-----------|--------|
| 0-2            |           |        |
| 2-4            |           |        |
| 4-6            |           |        |
| 6-8            |           |        |
| 8-10           |           |        |



5. Using your figures in Question 4, what is the total of all the frequencies. Check your answer using the interactive file.

\_\_\_\_\_

\_\_\_\_\_

6. Can this histogram represent any data greater than or equal to 10? Explain.

\_\_\_\_\_\_

7. The frequency of the data items can be varied with the slider a,

a. Move the slider from 0 to 2 and complete the table:

| The slider a equals 2 |           |  |
|-----------------------|-----------|--|
| Class Interval        | Frequency |  |
| 0-2                   |           |  |
| 2-4                   |           |  |
| 4-6                   |           |  |
| 6-8                   |           |  |
| 8-10                  |           |  |

How does this differ from the original table in question 4 of this student activity?

\_\_\_\_\_

b. Move the slider to 6.5 and complete the corresponding table, then move the slider to 8.5 and complete the corresponding table.

| Slider equals 6.5 |           |  |  |  |
|-------------------|-----------|--|--|--|
| Class Interval    | Frequency |  |  |  |
| 0-2               |           |  |  |  |
| 2-4               |           |  |  |  |
| 4-6               |           |  |  |  |
| 6-8               |           |  |  |  |
| 8-10              |           |  |  |  |

| Slider equals 8.5 |           |  |  |  |
|-------------------|-----------|--|--|--|
| Class Interval    | Frequency |  |  |  |
| 0-2               |           |  |  |  |
| 2-4               |           |  |  |  |
| 4-6               |           |  |  |  |
| 6-8               |           |  |  |  |
| 8-10              |           |  |  |  |



| e possible labels for the x axis that this histogram could represent. Note |                                                                                                                 |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ograms are used for continuous data.                                       |                                                                                                                 |
|                                                                            |                                                                                                                 |
|                                                                            | e possible labels for the x axis that this histogram could represent. Note ograms are used for continuous data. |

9. Reset the slider in the interactive file. If the boundaries of the class interval remained the same, but the frequency doubled in each interval, complete the table and draw the corresponding histogram.

| Class Interval | Frequency |
|----------------|-----------|
| 0-2            |           |
| 2-4            |           |
| 4-6            |           |
| 6-8            |           |
| 8-10           |           |



# **Student Activity:** To investigate the mean and standard deviation of a data set



Use in connection with the interactive file "Mean and SD" on the Student's CD.

| Inter | /al | Mid<br>Interval | Frequency | Mid Interval<br>X Frequency | Deviation =<br>(Mid Interval - Mean) | Deviation <sup>2</sup> =<br>(Mid Interval -<br>Mean) <sup>2</sup> | Frequency X<br>(Mid Interval<br>Mean) <sup>2</sup> |
|-------|-----|-----------------|-----------|-----------------------------|--------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|
| 0 -   | 2   | 1               | 5         |                             |                                      |                                                                   |                                                    |
| 2 -   | 4   |                 | 8         |                             |                                      |                                                                   |                                                    |
| 4 -   | 6   |                 | 6         |                             |                                      |                                                                   |                                                    |
| 6 -   | 8   |                 | 6         |                             |                                      |                                                                   |                                                    |
| 8 -   | 10  |                 | 3         |                             |                                      |                                                                   |                                                    |
| 10 -  | 12  |                 | 2         |                             |                                      |                                                                   |                                                    |
| 12 -  | 14  |                 | 0         |                             |                                      |                                                                   |                                                    |

|    | teractive file records the Mean and Standard Deviation correct to 1 decimal place.)  How many students are in the class? |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 2. | What is the mid interval between 2 and 4?                                                                                |
| 3. | What is another name for how often an item occurs in an interval?                                                        |
| 4. | Calculate the Mid Interval values for all the intervals. Check your results using the interactive file.                  |
|    |                                                                                                                          |
|    |                                                                                                                          |



| Calculate the value of your results using the | of the Mid Interval x Frequency e interactive file. | for all the intervals. Checl |
|-----------------------------------------------|-----------------------------------------------------|------------------------------|
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
| What 2 sets of figure                         | es does one need to calculate t                     | he mean?                     |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
|                                               |                                                     |                              |
| Calculate the mean f                          | or the following data set:                          |                              |
|                                               |                                                     |                              |
| Interval                                      | Mid Interval                                        | Frequency                    |
| 0 - 2                                         | 1                                                   | 5                            |
| 2 - 4                                         |                                                     | 8                            |
| 4 - 6                                         |                                                     | 6                            |
| 6 - 8                                         |                                                     |                              |
| ν- δ                                          |                                                     | ^                            |
| 8 - 10                                        | ı                                                   | 6                            |
|                                               |                                                     | 3                            |
| 10 - 12                                       |                                                     |                              |
|                                               |                                                     | 3                            |

| 8. | List the steps required to calculate the mean of a set of data in a frequency table |
|----|-------------------------------------------------------------------------------------|
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |



| 9.  | Calculate the deviation = (mid interval value – mean) for all the intervals. Check your results using the interactive file.                                         |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     |                                                                                                                                                                     |  |  |  |  |  |  |
|     |                                                                                                                                                                     |  |  |  |  |  |  |
| 10. | Calculate the values of the deviation <sup>2</sup> for all the intervals. Check your results using the interactive file.                                            |  |  |  |  |  |  |
|     |                                                                                                                                                                     |  |  |  |  |  |  |
| 11. | Notice that Step 4 changes all the numbers to positives. Does this mean that it does not matter which side of the mean the deviation is on? Comment on your answer. |  |  |  |  |  |  |
| 12. | Calculate the values of the deviation <sup>2</sup> X frequency for all the intervals. Check your results using the interactive file.                                |  |  |  |  |  |  |
|     |                                                                                                                                                                     |  |  |  |  |  |  |
| 13. | Calculate the standard deviation and use the interactive file to check your results.                                                                                |  |  |  |  |  |  |
|     |                                                                                                                                                                     |  |  |  |  |  |  |
|     |                                                                                                                                                                     |  |  |  |  |  |  |



| 14 | . List the steps required to calculate the Standard Deviation of a set of data in a |
|----|-------------------------------------------------------------------------------------|
|    | frequency table?                                                                    |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |

15. Complete the table and calculate the Mean and Standard Deviation for the following table:

| Inter | val | Mid<br>Interval | Frequency | Mid Interval<br>X Frequency | Deviation =<br>(Mid Interval - Mean) | (Mid Interval - | Frequency X<br>(Mid Interval -<br>Mean) <sup>2</sup> |
|-------|-----|-----------------|-----------|-----------------------------|--------------------------------------|-----------------|------------------------------------------------------|
| 0 -   | 2   | 1               | 4         |                             |                                      |                 |                                                      |
| 2 -   | 4   |                 | 4         |                             |                                      |                 |                                                      |
| 4 -   | 6   |                 | 1         |                             |                                      |                 |                                                      |
| 6 -   | 8   |                 | 4         |                             |                                      |                 |                                                      |
| 8 -   | 10  |                 | 4         |                             |                                      |                 |                                                      |
| 10 -  | 12  |                 | 2         |                             |                                      |                 |                                                      |
| 12 -  | 14  |                 | 1         |                             |                                      |                 |                                                      |

| Mean =   | ·                                                    | val × Frequency) requency)                            |                       |
|----------|------------------------------------------------------|-------------------------------------------------------|-----------------------|
| Standard | d Deviation= $\frac{\mathbf{T}^{0}}{\mathbf{T}^{0}}$ | otal(Frequency ×(Mid Interval - M<br>Total(Frequency) | (Jean) <sup>2</sup> ) |
|          |                                                      |                                                       |                       |
| Che      | ck your results o                                    | n the interactive file.                               |                       |



| 16. | in a period just before their exams?                                                                                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 17. | If all the students got flu and were not able to take part in sports, what would be the effect on the mean and standard deviation?      |
| 18. | In order to increase the mean, what type of students would need to join the class? You can change the figures in the interactive table. |
|     |                                                                                                                                         |



#### **Mean and Standard Deviation Quiz**

Use in connection with the interactive file "Mean and SD Quiz" on the Student's CD.

- 1. How many students are in the class?
  - A. 30
  - B. 7
- 2. What is the mid Interval value for the interval 6-8?
  - A. 3
  - B. 7
- 3. In the (Mid Interval Mean) column in the table, is it true that Mid Interval values less than the mean will give a negative value for the (Mid Interval -Mean) column?
  - A. Yes
  - B. No
- 4. After the (Mid Interval Mean) has been squared must it be multiplied by the frequency, true or false?
  - A. False
  - B. True
- 5. Which of the following is the formula for standard deviation, when the frequency is greater than or equal to 1?

A.

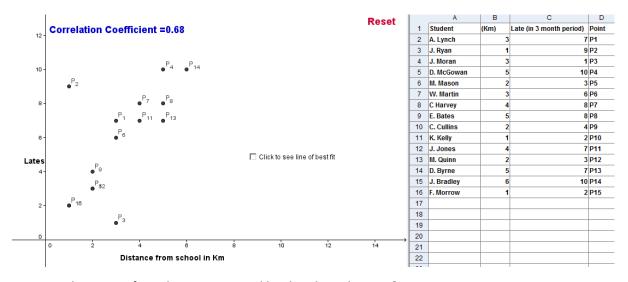
$$\sqrt{\frac{\sum f(x-\bar{X})^2}{\sum f}}, \text{ where f= frequency, x = mid interval value}$$
 and  $\bar{X}$  = the mean.

B.

$$\sqrt{\frac{\sum (x-\bar{X})^2}{\sum f}}$$
, where f= frequency, x = mid interval value and  $\bar{X}$ = the mean.

- 6. Reset the table and run the arrows again. Now if the number of people in the Interval 12-14 increased by 4, would the mean increase?
  - A. No
  - B. Yes
- 7. If the number of people in the interval 0-2 increased by 4, would it have the same effect on the mean as the interval 12-14 increasing by 4?
  - A. No
- B. Yes




- 8. If you remove all of the students in the interval containing the mean and don't replace them, what effect will it have on the Standard Deviation? Use the interactive file.

  A. It increases
  B. It decreases
  9. Now click the Reset button on the table, and fix it so that all 30 students are in the 6-8 interval, what is the standard deviation?
  - A. 30
  - B. 0
- 10. If all 30 students were in the range 12-14, then the Standard Deviation would be 0?
  - A. True
  - B. False



#### Student Activity: To investigate correlation and line of best fit

Use in connection with the Interactive file "Correlation and line of best fit" on the Student's CD.



1. What type of graph is represented by the plotted points?

From viewing the interactive file do you consider that there is any correlation between the distance someone lives from school and the number of days they were late? Explain your

answer.

3. In the diagram provided in the interactive file does the line of best fit have a positive or negative slope, what does this tell us?

\_\_\_\_\_

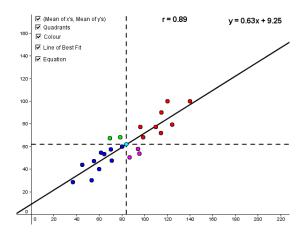
4. List a data set that would enable the student in question to be described as an outlier and explain your answer.

5. It was discovered that an error had been made in J. Ryan's figures and in fact he had been late no days. What effect would this have had on the correlation and line of best fit?

\_\_\_\_\_\_



| ь. | what is the effect of changing F. Morrow's figures to 8 lates? Explain the reason why?                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | What is the effect of changing Harvey's, Bates's, Kelly's and Byrne's number of lates to zero Explain your answer. What shape is the line of best fit now? |
| 8. | If all the points lay on the line of best fit, what is the correlation?                                                                                    |
| 9. | Give a reason, other than distance from the school that could explain why some students were late.                                                         |
|    |                                                                                                                                                            |




#### Tasks Related to "Correlation and Line of Best Fit 2"

Use in connection with the interactive file, 'Correlation and Line of Best Fit 2', on the Student's CD.

Calculating the point (Mean of x s, Mean of y s) and using it to split the plane into 4 quadrants is <u>not</u> specifically mentioned in the syllabus. However, it is a helpful way of learning about relationships in the data.

The purpose of this task sheet is to explore the relationship between the pattern of the points in a scatter plot, the correlation coefficient, line of best fit, outliers, the point (Mean of x s, Mean of y s) and the numbers of points in each quadrant.



#### Task 1

Leave the 24 points as they are. Click on "(Mean of x s, Mean of y s)". This shows the point that is the centre of the data. We will call this the point A

Click on "Quadrants".

<u>Complete the sentence:</u> The bottom left quadrant has all the points that have below average x-values and \_\_\_\_\_\_ average y-values.

<u>Complete the sentence:</u> The top right quadrant has all the points that have above average x-values and \_\_\_\_\_\_ average y-values.

Click on "Colour".

Count up all the points in each of the quadrants. Does the amount of points in each quadrant hint at a relationship in the data?

By looking at your answers to the previous questions and the diagram is there a <u>linear</u> relationship in the data?

By looking at both the correlation coefficient and the scatter plot could you say that as the x-values of the points increase the y-values of the points tend to increase?



Click on "Line of Best Fit" and "Equation".

Does the line of best fit pass through all the points in the scatter plot?

Does the line of best fit have to go through any of the points in the scatter plot?

What can you say about the point A and the line of best fit?

Your friend George asks "Does the line of best fit have to have half the points on either side of it?". Move the points and see if you can answer George's question.

Drag some of the points around the screen so that the linear relationship is maintained. Which 2 quadrants does the line of best fit pass through when the correlation coefficient (r) is close to 1?

Drag some of the points around the screen so that the points are still in a linear relationship. Which 2 quadrants does the line of best fit pass through when the correlation coefficient (r) is close to −1?

#### Task 2

Reset the scatter plot using the icon at the top right-hand corner of the screen 😂.



Move the points so that there are an equal number of points in all four quadrants.

- (a) Arrange the points so that they are bunched together into a "cloud" or "swarm". Is the correlation coefficient close to 1, -1 or 0?
- (b) Arrange the points so that they resemble the outline of a circle. Is the correlation coefficient close to 1, -1 or 0?
- (c) Arrange it so that the points in two of the quadrants are stretched out into a line and the points in the other two quadrants are close to the point A is the correlation coefficient close to 1, -1 or 0?

#### Task 3

Reset the scatter plot using the icon at the top right-hand corner of the screen 🗟.



Put 10 points in the top right quadrant. Put 10 points in the bottom left quadrant. Put 2 in the top left quadrant. Put 2 points in the bottom right quadrant.

While keeping the number of points in each quadrant as outlined above can you adjust the points so that there is a correlation close to -1 or 1?

While keeping the number of points in each quadrant as outlined above can you adjust the points so that there is a correlation close to 0?



Having a large number of points in the bottom left and top right quadrants doesn't always indicate association between the variables. There must be a linear pattern for the correlation coefficient (r) to be close to -1 or 1.

#### Task 4

Reset the scatter plot using the icon at the top right-hand corner of the screen  $\square$ .

Move the points so that the pattern looks like a quadratic.

Is there a pattern to the points?

Is the pattern linear?

There may be a strong association between the variables, but since the relationship is not linear it wouldn't be useful to summarise the strength of the relationship with the correlation coefficient (r) or to draw a line of best fit.

#### Task 5

Reset the scatter plot using the icon at the top right-hand corner of the screen  $\square$ .

Group all the points into a tight bunch in one of the corners of the screen.

Adjust the points until you have a correlation coefficient close to 0.

Drag one point very far away from this bunch e.g. to towards the opposite corner of the screen.

Watch the correlation coefficient changing.

23 of the points are in a bunch and there is 1 point far away from the rest.

Is there a linear relationship between the points?

What conclusion can you draw about the effect of the outlier on the level of correlation?

The correlation coefficient indicates a strong linear relationship but by looking at the graph you see that the relationship is not linear (without the outlier the correlation coefficient is near 0).

It is important to analyse the data both numerically (correlation coefficient) and graphically (scatter plot).

A single outlier can bring the value of r close to -1 or 1



#### Task 6

Set the points up so that they are (almost) in a line (that isn't horizontal or vertical).

Take note of the correlation coefficient (r).

Drag one point very far away from this line of dots.

How does the correlation coefficient (r) change?

A single outlier can bring the correlation coefficient close to zero.



# **Scatter plot Quiz**

| 1.  |                 | er plot graphs<br>ationship betv<br>True      | airs of numerical data, with one variable on each axis, to look<br>een them.<br>B. False |
|-----|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------|
| 2.  | the inde        | er plot can be<br>pendent varia<br>True       | sed when the dependent variable may have multiple values for<br>ble.<br>B. False         |
| 3.  |                 | ter the correla<br>True                       | ion the closer the points will be to the line of best fit.  B. False                     |
| 4.  | What ar called? | e data points                                 | hat lie far away from the overall pattern of the rest of the data                        |
|     | A.              | Outliers                                      | B.Outsiders                                                                              |
| 5.  | of best f       | it.                                           | gative correlations show data points clustered close to the line                         |
|     | A.              | True                                          | B. False                                                                                 |
| 6.  |                 | vhat type of co                               | is drawn from top left of the graph towards the bottom right rrelation?                  |
|     | B.              | Negative                                      |                                                                                          |
| 7.  | In a pos<br>A.  | itive correlation<br>True                     | n both variables will move in the same direction. True or false?<br>B. False             |
| 8.  |                 | weaker the re                                 | nave been plotted, the more the diagram resembles a straight ationship.  B. False        |
| 9.  |                 | ne scatter plot<br>the other.<br>True         | shows a strong correlation we can assume that one variable  B. False                     |
| 10. |                 | it. True or fals                              | gative correlations show data points clustered close to the line e?  B. False            |
| 11. |                 | the following  <br>lands make lig<br>Positive | roverb – Does it indicate negative or positive correlations?<br>ht work                  |
|     | B.              | Negative                                      |                                                                                          |
| 12. |                 | the following  <br>is wealth<br>Positive      | roverb – Does it indicate negative or positive correlations?                             |
|     | B.              | Negative                                      |                                                                                          |



### **Statistical Words 1**

Use in connection with the interactive file "Word Quiz 1" on the Student's CD.

By completing Table A match the items on the right to the items on the left.

| 1. Statistics                                                         | A. The number of occurrences of an item or an event.                                                              |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 2. Frequency                                                          | <ul> <li>B. A chart that uses a rectangular bar to represent the data of<br/>each item.</li> </ul>                |
| <ol> <li>Frequency         Distribution         Table     </li> </ol> | C. Shows data on a number line with x or other marks to show frequency.                                           |
| 4. Bar Chart                                                          | D. A chart that displays whether there is a relationship<br>between 2 random variables.                           |
| 5. Pie Chart                                                          | E. The study of collecting, organizing, presenting and analysing data.                                            |
| 6. Line Plot                                                          | F. The chart that uses "stem" and "leaves" to show the data.                                                      |
| 7. Stem-and-Leaf Diagram                                              | G. A table which shows the data distribution.                                                                     |
| 8. Scatter Diagram                                                    | H. A chart that uses sectors of a disk to represent what<br>fraction of the data falls into different categories. |

#### Table A

| 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. |
|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |



## **Statistical Words 2**

Use in connection with the interactive file "Word Quiz 2" on the Student's CD.

By completing Table B match the items on the right to the items on the left

| Discrete data                               | A. 25th Percentile                                                                                                    |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Continuous data                             | B. It is the range of the middle 50% of the data values.                                                              |
| 3. Histogram                                | <ul> <li>Type of numerical data where we can list all of the possible<br/>values that could arise.</li> </ul>         |
| <ol> <li>Interquartile<br/>Range</li> </ol> | <ul> <li>Type of numerical data that could take on any real number<br/>in an interval, including decimals.</li> </ul> |
| 5. Univariate data set                      | E. A chart representing continuous data using adjacent rectangles.                                                    |
| 6. First Quartile                           | <ul> <li>F. A data set in which one measurement has been made on<br/>each item.</li> </ul>                            |

#### Table B

| 1. | 2. | 3. | 4. | 5. | 6. |
|----|----|----|----|----|----|
|    |    |    |    |    |    |